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ABSTRACT

In this study, a statistical model is developed that exploits the slow evolution of the Madden–Julian oscillation
(MJO) to predict tropical rainfall variability at long lead times (i.e., 5–20 days). The model is based on a field-
to-field decomposition that uses previous and present pentads of outgoing longwave radiation (OLR; predictors)
to predict future pentads of OLR (predictands). The model was developed using 30–70-day bandpassed OLR
data from 1979 to 1989 and validated on data from 1990 to 1996. For the validation period, the model exhibits
temporal correlations to observed bandpassed data of about 0.5–0.9 over a significant region of the Eastern
Hemisphere at lead times from 5 to 20 days, after which the correlation drops rapidly with increasing lead time.
Correlations against observed total anomalies are on the order of 0.3–0.5 over a smaller region of the Eastern
Hemisphere.

Comparing the skill values from the above OLR-based model, along with those from an identical statistical
model using reanalysis-derived 200-mb zonal wind anomalies, to the skill values of 200-mb zonal wind pre-
dictions from the National Centers for Environmental Prediction’s Dynamic Extended Range Forecasts shows
that the statistical models appear to perform considerably better. These results indicate that considerable advantage
might be afforded from the further exploration and eventual implementation of MJO-based statistical models to
augment current operational long-range forecasts in the Tropics. The comparisons also indicate that there is
considerably more work to be done in achieving the likely forecast potential that dynamic models might offer
if they could suitably simulate MJO variability.

1. Introduction

Useful skill in long-range weather forecasts from
present-day numerical weather prediction models typi-
cally extends out to about 6 days, at which point errors
associated with the initial conditions and from short-
comings in the numerical parameterization of physical
processes (e.g., cumulus convection) grow to equal or
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exceed those from forecasts based on climatology alone
(e.g., van den Dool 1994). This ‘‘6-day’’ timescale for
useful predictability is typically determined from glob-
ally averaged rms errors or global spatial correlations
between forecast and validation 500-mb height anom-
alies. Since most of the variations in this quantity are
confined to the extratropics and because a characteristic
timescale of synoptic-scale weather variability is on the
order of 5 days, this 6-day limit of useful predictability
is mostly a reflection of our ability to forecast midlat-
itude weather phenomena. However, in some cases it is
reasonable to presume that the useful limit of predict-
ability for a given phenomena is related to the timescale
of the process itself (e.g., van den Dool and Saha 1990).
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For example, the phase and strength of the quasi-bi-
ennial oscillation (QBO) would be easily predictable
with reasonable skill out to 6 months or even over a
year. Moreover, even at present, the evolution of the
coupled ocean–atmosphere El Niño–Southern Oscilla-
tion (ENSO) phenomena is predictable with lead times
of at least 6–9 months (e.g., Cane et al. 1986). While
neither of these climate-related examples constitute even
a rough approximation to an extremely long-range
weather forecast, they each illustrate two important as-
pects regarding the relationship between low-frequency,
quasi-predictable processes and extended-range fore-
casting. The first, mentioned above, is that the timescale
of the process itself strongly influences the lead time
through which useful predictive information can be ob-
tained. In other words, the timescale of useful predict-
ability is not limited to 6 days for all geophysical pro-
cesses that affect weather. Second, being able to predict
aspects of low-frequency processes in the ocean–at-
mosphere system can be extremely valuable to extend-
ed-range weather and/or short-term climate forecasting.
For example, the slowly evolving state of the QBO is
used as input for statistical forecasts of Atlantic hurri-
cane activity with lead times of several months (Gray
et al. 1992; Landsea et al. 1994). In addition, predictions
of the state of ENSO provide valuable information on
the evolution of the tropical surface boundary condition
[i.e., sea surface temperatures (SSTs)], which in turn
can be used to produce seasonal forecasts from an en-
semble of numerical weather predictions (e.g., Ji et al.
1994; Mason et al. 1999) or from statistical models (e.g.,
Graham and Barnett 1995) with lead times from 1 to
12 months.

Another form of variability that evolves slowly rel-
ative to ‘‘weather’’ but which has yet to be fully ex-
ploited in regards to its relationship to extended-range
weather forecasting is the Madden–Julian oscillation
(MJO; Madden and Julian 1971). The MJO accounts
for most of the variability in the tropical troposphere
on intraseasonal timescales. Since its discovery in the
early 1970s, a wealth of studies have been undertaken
to characterize its space–time structure (see review by
Madden and Julian 1994), theorize its origin (e.g., Lau
and Peng 1987; Emanuel 1987; Neelin et al. 1987;
Chang and Lim 1988; Hendon 1988; Wang and Rui
1990a; Salby et al. 1994; Wang and Xie 1998), and even
simulate/forecast its behavior in numerical models (e.g.,
Hayashi and Sumi 1986; Ferranti et al. 1990; Slingo et
al. 1996; Waliser et al. 1999). Observational studies
have resulted in the following description. The MJO is
generally characterized by an eastward propagating,
equatorially trapped, wavenumber-one, baroclinic os-
cillation in the tropical wind field. The propagation
speed is on the order of 6 m s21 in the Eastern Hemi-
sphere, where it strongly interacts/modulates deep con-
vective activity, and about 12 m s21 or greater in the
Western Hemisphere, where it continues to propagate
without much influence on the cloud field. Interactions

between MJO-related anomalies in convection and the
large-scale circulation are strongest in the Eastern Hemi-
sphere, over the Indian and western Pacific Oceans,
where the oscillation exhibits its greatest variability and
typically reaches its maximum amplitude. Such inter-
actions strongly influence the onset and activity of the
Asian–Australian monsoon system (e.g., Yasunari 1979,
1980; Hendon and Liebmann 1990a,b) and have also
been shown to influence extratropical regions as well
(e.g., Weickmann 1983; Liebmann and Hartman 1984;
Weickmann et al. 1985; Lau and Philips 1986; Ferranti
et al. 1990; Higgins and Mo 1997). Furthermore, cou-
pling with the tropical ocean via westerly wind bursts
associated with the passage of an MJO convection event
can significantly modify the structure of the thermocline
in the equatorial Pacific Ocean (e.g., McPhaden and Taft
1988; Kessler et al. 1996). This latter interaction has
even been suggested to play an important role in trig-
gering ENSO events (e.g., Lau and Chan 1988; Weick-
mann 1991; Kessler et al. 1996). Of all the above char-
acteristics of the MJO, the most important and relevant
to the present study include its very large-scale, slow
eastward propagation, semioscillatory nature, strong im-
pact on tropical rainfall in the Eastern Hemisphere, and
to some extent its teleconnections to midlatitude weath-
er.

Even with the wealth of studies undertaken on the
MJO, only a few have examined the relationships be-
tween the MJO and the skill of medium-to-extended-
range numerical weather forecasts, with these few gen-
erally focusing on midlatitudes or global wavenumber-
one structure only. Using operational medium-range
forecasts (MRF) from the National Centers for Envi-
ronmental Prediction (NCEP, formerly the National Me-
teorological Center) for the years 1987 and 1988, Chen
and Alpert (1990) showed that when the MJO amplitude
is large, model forecast skill of MJO propagation and
amplitude were quite good out to about 10 days based
on the analysis of the 200-mb velocity potential. How-
ever, when the MJO amplitude was small, the forecast
skill was poor. Similarly, Ferranti et al. (1990) dem-
onstrated that the skill of European Centre for Medium-
Range Forecasts extended-range forecasts in the extra-
tropics are significantly improved when the errors as-
sociated with the representation of the tropical intra-
seasonal oscillation are minimized. Lau and Chang
(1992) analyzed one season (14 December 1986–31
March 1987) of 30-day global forecasts derived from
the NCEP Dynamical Extended Range Forecasts
(DERFs). Their results showed that the NCEP MRF
forecast model used at that time (MRF86) had signifi-
cant skill in predicting the global pattern of intraseasonal
variability in upper-level velocity potential and stream-
function up to 10 days, with the error growth of tropical
and extratropical low-frequency modes less (greater)
than persistence when the amplitude of the MJO is large
(small).

A more recent version of DERF experiments has been
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FIG. 1. (a) 30–60-day bandpassed observations of 200-mb equatorial (7.58N–7.58S) zonal wind
anomalies for the winter of 1987. (b) and (c) The associated 3- and 10-day bandpassed DERFs
of the 200-mb equatorial zonal wind from the reanalysis version of the NCEP MRF model. See
text for details concerning the bandpass procedures.

conducted with the reanalysis version (Kalnay et al.
1996) of the NCEP MRF model (Schemm et al. 1996).
This experiment includes 50-day forecasts made one a
day for the period January 1985–February 1990. Figure
1 shows a measure of the forecast skill for the MJO
phenomena from these set of experiments. Shown in the
left panel of the figure are 30–70-day bandpassed ob-
servations of 200-mb equatorial zonal wind1 anomalies
for the winter of 1987, an especially active period for
the MJO (Salby and Hendon 1994). The observations
show four distinct intraseasonal ‘‘oscillations’’ during
this period in which the 200-mb zonal wind anomalies
vary up to 610 m s21 and propagate from the eastern
Atlantic sector to the western Pacific at about 6 m s21,
weaken as they progress to the date line, and then con-
tinue to propagate eastward at a speed of about 20 m
s21. Shown in the middle and right panels are the as-
sociated 3- and 10-day bandpassed forecasts of the 200-
mb equatorial zonal wind. The bandpass filtering for the
observations as well as the forecasts was performed
using an iterative moving-average procedure (Brooks
and Carruthers 1953). For the observations, the filtering
was performed on a 60-month (January 1985–December

1 Due to the vast amount of data produced by this DERF experi-
ment, only a subset of variables (200-mb winds, 500-mb heights,
850-mb winds and temperature, and precipitation) were saved in a
manner that made them readily accessible. Of these variables, 200-
and 850-mb zonal winds and precipitation typically provide the best
measures of tropical intraseasonal variability, and of these variables,
it was thought that the 200-mb zonal winds would be modeled more
favorably by the MRF model and thus be the best variable for the
present analysis.

1989) daily time series at each grid point. For the fore-
casts, the filtering was performed separately on each 50-
day forecast of the same 60-month period at each grid
point. The procedure is applied in the following way.
In order to remove variations longer than 70 days, a
moving average of length equal to 25 days is applied
four times to each segment of 50-day forecasts (each
filtered time series becomes the input for the next pass
and so on). The smoothed time series obtained this way
is subtracted from the original 50-day forecasts to pro-
vide a time series containing variations less than 70
days. Next, a moving average of length 9 is applied four
times to remove variations less than 30 days. Since each
of the above moving average filters requires additional
points at the ends of the 50-day forecasts (12 and 4 data
points at each end, for each filter, respectively), an au-
toregressive model of order 10 is fit to the 50-day fore-
casts at each pass of the moving average to generate
the additional points (see Jones et al. 1999, manuscript
submitted to Climate Dyn. for further details). Note that
since the filtering is performed on each forecast sepa-
rately, the data presented in the forecast panels are not
continuous in the strictest sense and this introduces the
high-frequency variability evident in these two panels.
The 3-day forecast data show modest resemblance to
the observations, with the best agreement occurring in
the longitude range 08–1508E, with rather poor agree-
ment at other longitudes. The time period of best agree-
ment occurs between the middle of January and the
middle of April when the 200-mb zonal wind variations
are strongest in the observations. During this period, the
3-day forecast does a reasonably good job at forecasting
the evolution of the zonal wind. At 10 days, there is
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FIG. 2. Temporal correlations between bandpassed observations of 200-mb zonal winds and the associated bandpassed values from the
NCEP DERFs for winter (left) and summer (right) seasons for the entire 61-month DERF experiment period. The plots show correlations
for 3-, 5-, 10-, 15-, and 20-day forecasts, represented here as ‘‘Day0 1 3,’’ ‘‘Day0 1 5,’’ etc.

still some evidence of the two strongest eastward prop-
agating events, although by this time the overall mag-
nitude of the intraseasonal variability is considerably
diminished.

Figure 2 shows a quantitative measure of forecast skill
for the MRF model in predicting tropical intraseasonal
variations. Temporal correlations are shown between
predicted and observed bandpassed 200-mb zonal wind
anomalies versus forecast day for the global tropical

region for the entire 61-month experiment period. For
these calculations, the data were separated into winter
(1 November–31 March) and summer (1 May–30 Sep-
tember) periods. Evident is the rapid decline of forecast
skill in the first few days, from about 0.3 to 0.5 at
forecast day 5 to about 0.1 to 0.3 at forecast day 10.
These values suggest little if any predictive value be-
yond about 5 days. While this timescale is not signifi-
cantly different from the more generic 6-day timescale
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associated with global weather forecasts discussed
above, the fact that it applies to a fairly well-defined
phenomena with an intraseasonal timescale (i.e., 30–
60-day MJO) indicates that the MRF model is likely
not performing up to the potential skill level that a dy-
namical forecast might be expected to possess for such
a slowly evolving phenomena. This does not come as
a significant surprise. The skill of numerical weather
forecasts in the Tropics have always tended to lag that
in the midlatitudes (e.g., Kanamitsu 1985; Reynolds et
al. 1994). This reduced skill is due to the greater prev-
alence of cumulus convection in the Tropics, a process
extremely difficult to parameterize, and due to the lack
of a simple force balance (e.g., quasigeostrophic). In the
Tropics, the pressure gradient and Coriolis forces are
weaker, and thus boundary layer friction and transients
play a relatively larger role in the force balance.

The above state of affairs regarding dynamical fore-
casts of tropical intraseasonal variability raises two
questions. The first is, how skillful should we expect
such forecasts to be? The second is, how well might
statistical models perform at the same task? Fortuitous-
ly, answering the second question may help us constrain
and/or provide the answer to the first question. Further,
if the answer to the second question is encouraging,
then statistical models especially formulated to capture
and predict the evolution of intraseasonal variability
might help augment current operational extended-range
forecast procedures until the skill of the numerical mod-
el meets or exceeds that from the statistical models. To
help answers the above two questions, we have devel-
oped a statistical model to begin exploring the feasibility
of applying such models to the prediction of tropical
intraseasonal variability. Although not new, this idea
has received little attention. Von Storch and Xu (1990)
examined principal oscillating patterns (POPs) of trop-
ical 200-mb velocity potential anomalies from a 2-yr
subinterval of a 5-yr dataset. Upon verifying against the
remaining 3 years of data, they found that forecasts
based on the first pair of POPs produced forecasts that
were better than persistence and appeared to have useful
skill out to at least 10 days. While theirs is a very
encouraging result, the extremely limited length of data
used combined with the nonstationary characteristic of
the MJO over interannual timescales (e.g., Salby and
Hendon 1994) still warrants caution in assessing the
applicability of their result. Moreover, 200-mb velocity
potential is a very smoothly varying quantity and one
that is only loosely related to near-surface meteorolog-
ical variables of interest (e.g., precipitation); thus it is
not clear if much practical value can be afforded from
their result. More recently, Kousky and Kayano (1993)
suggested that real-time monitoring of the MJO could
be achieved by projecting anomalies of a number of
fields [e.g., outgoing longwave radiation (OLR), 200-
mb velocity potential, surface pressure, etc.] onto their
principal combined extended empirical orthogonal func-
tion patterns that would indicate the present phase and

strength of the MJO in the tropical atmosphere and its
likely evolution. In this paper, we build on these earlier
studies to further address the two questions posed above.
In doing so, we use slightly different statistical tech-
niques along with considerably more data for model
development and validation, and provide a more direct
comparison between our statistical model and a present-
day numerical counterpart. In the next section, we de-
scribe the statistical model and the datasets used. In
section 3, we present the model validation results. In
section 4, we summarize our results, discuss the model’s
limitations, compare results from a version of the same
statistical model based on 200-mb zonal winds to the
DERF figures shown above, and discuss plans for future
work.

2. Model specifics

Most of the results presented in this paper are based
on a statistical model that utilizes anomalies of OLR
(Gruber and Krueger 1984) as both predictors and pre-
dictands. The choice of OLR as a predictand is based
on our desire for a forecast state that has a fairly tangible
relationship to rainfall. In contrast to 200-mb winds or
velocity potential, which are only loosely related to rain-
fall, OLR anomalies have been used in numerous studies
as a surrogate for tropical rainfall anomalies due to their
close association with anomalies in tropical deep con-
vection. These studies include analysis of the ENSO
phenomena (e.g., Gill and Rasmusson 1983; Rasmusson
and Wallace 1983; Lau and Chan 1988); the relation-
ships between large-scale characteristics of convection,
SST, and wind (e.g., Graham and Barnett 1987; Gutzler
and Wood 1990; Waliser and Graham 1993); as well as
tropical climate trends (e.g., Nitta and Yamada 1989;
Graham 1995; Morrissey and Graham 1996; Waliser and
Zhou 1997). Even more relevant to the present study is
the use of OLR for studying intraseasonal variability
(e.g., Weickmann 1983; Weickmann et al. 1985; Lau
and Chan 1985, 1986, 1988; Knutson and Weickmann
1987; Wang and Rui 1990b; Salby and Hendon 1994;
Hendon and Salby 1994; Hendon and Glick 1997; Jones
et al. 1998) and for producing actual estimates of trop-
ical rainfall (e.g., Morrissey 1986; Yoo and Carton 1988;
Arkin and Ardanuy 1989; Janowiak and Arkin 1991;
Xie and Arkin 1997). Additional discussion of the uses
of OLR along with a comparison between OLR and
other satellite-derived measures of tropical deep con-
vection can be found in Waliser et al. (1993).

While the presentation mainly focuses on the OLR-
based model, statistical models using other variables or
their combinations have been examined as well. These
are discussed in the section 4, and in fact a model using
200-mb zonal winds in a fashion identical to that de-
scribed below is introduced briefly for the purposes of
providing a direct comparison with the numerical fore-
casts presented in the introduction. For the OLR-based
model, 5-day average (pentad) OLR data were obtained
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FIG. 3. Spectral response of the 29-point Lanczos bandpass filter
applied to the OLR pentad data.

from NCEP for the years 1979–96. These data have 2.58
spatial resolution and contain exactly 73 pentads for each
year. In the case of leap years, the extra day (i.e., 29
February) is included in the pentad extending from 25
February to 1 March. For this study, only the data be-
tween 308N and 308S are used. To reduce the computation
expense for the exploratory phase of this work, the data
resolution was reduced to 58 3 58. In order to focus the
model’s skill on the intraseasonal timescale, the data are
bandpassed with a 30–70-day Lanczos bandpass filter
(Duchon 1979). The spectral response function of the
filter is shown in Fig. 3. The filtering is done in frequency
space by applying a Fourier transform to the time series
at each grid point, windowing the resulting complex spec-
tral coefficients by the function in Fig. 3, and then per-
forming an inverse Fourier transform.

Predictors for the model are made up of the two ‘‘most
recent’’ bandpassed OLR pentad maps (concatenated
together). For example, for any pentad TN, the associated
predictors would be the pentad maps TN21 together with
TN. Predictands for the model are ‘‘future’’ bandpassed
OLR pentad maps, with lead times of 1–9 pentads (i.e.,
5, 10, . . . , 45 days). Thus, for the predictor composed
of pentads TN21 and TN, the predictands would be the
single pentads TN11, . . . , TN19. For each of the nine
lead times, a singular value decomposition (SVD; see
Bretherton et al. 1992) between all the predictor sets
and their associated predictands at the given lead time
is performed. The output from this procedure provides
a set of ‘‘modes,’’ one set for each lead time, that pro-
vide a way of mapping an input predictor (i.e., past and
present ‘‘rainfall’’) to the most likely output predictand
(i.e., future rainfall).

The SVD procedure described above was performed
on the first 11 years of data (1979–89). Before the de-
composition, the data/models were also separated into
northern summer (16 May–16 November) and northern
winter (17 November–15 May) due to the differences
in the nature of the intraseasonal variability between
these two periods (e.g., Wang and Rui 1990b; Salby and
Hendon 1994). Hereafter, these two periods will be re-
ferred to as ‘‘winter’’ and ‘‘summer,’’ and the half-year
they each encompass will be referred to as a ‘‘season.’’
In the end, the above procedure produces two separate
statistical models, one for summer and one for winter,
for each different lead time.

The leading modes of the prediction models illustrate
many of the well-known features of the MJO and its
evolution. For example, the variability contained within
the first few modes is focused over the Indian and west-
ern Pacific Oceans, and the first two modes illustrate
the general eastward progression of anomalous rainfall
patterns over this same region. These characteristics can
be seen in Figs. 4 and 5, which show the first two modes
for a prediction of the third pentad in the future (i.e.,
denoted ‘‘Pentad0 1 3’’) for winter and summer, re-
spectively. Immediately evident is the relatively high
concentration of variability in the Eastern Hemisphere
for each of the modes shown, with some tendency for
the variability to be further concentrated near the equa-
tor. The eastward propagation is mildly evident within
a single mode’s progression from its Pentad0 2 1 (pre-
vious pentad) to Pentad0 (present pentad) representa-
tions, and then markedly obvious when examining the
change that is projected to occur for the forecast time,
Pentad0 1 3.

The spatial relationships between the mode-1 and -2
patterns tend to be in quadrature, which when combined
ends up producing the oscillatory/migratory nature of
the phenomena. Similar quadrature relations can be
found in the empirical orthogonal function decompo-
sitions of OLR by Murakami (1979), Lau and Chan
(1988), and Ferranti et al. (1990). The main differences
between the summer and winter patterns is the tendency
for the convective signal to move southward along the
South Pacific convergence zone (SPCZ) in the winter
patterns, and northward into India and southeast Asia
in the summer patterns (cf. Wang and Rui 1990b). The
mode-1 and mode-2 patterns for other lead times pri-
marily differ in the phase lag between the predictor
patterns and their associated predictand pattern, with the
phase lag of the eastward moving ‘‘wave’’ increasing
for longer lead times. Figure 6 shows the mode-3 pat-
terns for both winter (left) and summer (right). Similar
to modes 1 and 2, the patterns for mode 3 tends to
migrate south in the winter and north in the summer. In
contrast to modes 1 and 2, the spatial patterns exhibit
smaller scales of variability, with three rather than two
regions of extrema (i.e., ‘‘nodes’’). Furthermore, the
mode-3 patterns exhibit an asymmetric rather than a
symmetric wavelike pattern about the equator.
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FIG. 4. Modes 1 and 2 for Northern Hemisphere ‘‘winter’’ 3-pentad lead forecast. The top panels show the predictor patterns for Pentad0
(the current pentad) and Pentad0 2 1 (the previous pentad). The bottom panels show the associated predictand patterns for Pentad0 1 3
(i.e., 3 pentads in the future). See text for a definition of winter and a description of the model development period used.

The forecast models, one for each lead time and sea-
son, are made up of the above subset of modes obtained
from the SVD analysis. The left panels of Fig. 7 show
the fractional covariances accounted for by the first 10
modes for both summer and winter for lead times of 1,
4, and 8 pentads, along with an estimate of their sta-
tistical significance. The plots demonstrate three fea-
tures. First, a significant fraction of the covariance be-
tween the predictor and predictand datasets is contained
within the first two modes for any given lead time. Spe-
cifically, the fractional covariances of modes 1 and 2,
for the lead times shown, generally lie between 24%–
37% and 18%–28%, respectively, with the percentages
being less for longer lead times. Percentages for higher
modes generally contain on the order of 11% or less,
with percentages at longer leads increasing slightly for
the higher modes. Second, for all the modes shown,
there are only modest differences in the covariance per-
centages between summer and winter and/or between

different lead times, even though the spatial patterns
differ quite substantially (i.e., Figs. 4 and 5). Third,
given the 99% significance level shown, at least the first
three modes in each case can be judged as statistically
significant; this is also true for all the lead times for
both summer and winter seasons.

The right panels of Fig. 7 convey similar information
except in terms of the fractional variances of the pre-
dictand field accounted for by the first 10 modes for
both summer and winter for lead times of 1, 4, and 8
pentads, along with an estimate of their statistical sig-
nificance. These percentages provide information about
the amount of filtered variance that can be expected to
be accounted for by the model. The plots show that the
first two modes account for about 12% and 10%, re-
spectively. The percentages of the remaining modes di-
minish fairly rapidly with the first few remaining above
the 99% signficance level.

The 99% significance level presented in Fig. 7 was
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FIG. 5. Same as Fig. 4, except for Northern Hemisphere summer.

obtained as follows. First, the decorrelation scales in
time, and with latitude and longitude, were determined
for the bandpassed input data. These were approxi-
mately 6 pentads, 108 latitude, and 208 longitude. The
predictor and predictand datasets for winter and summer
for a 1-pentad lag were then subsampled by these values
so that each grid value represented an independent sam-
ple. Thus instead of 692 pentads, 12 lines, and 72 sam-
ples for the winter predictor and predictand sets, its
associated ‘‘test’’ dataset contained 115 time points, 6
lines, and 18 samples. Then, separately for both the
summer and winter test data, the time and space order
of the data were each randomly permuted 100 times.
For each of the 100 cases, the SVD decomposition was
performed, and the mode N eigenvalues for all 100 cases
were sorted in descending order, where N 5 1, . . . , 10.
Thus, the first value in each sorted list gives the largest
eigenvalue for the associated mode out of 100 randomly
permuted datasets. For example, the first value in the
mode-1 list gives the largest mode-1 eigenvalue of the
100 SVD procedures, the second value in that same list

gives the second largest mode-1 eigenvalue, and so
forth. Similarly, the first value in the mode-2 list gives
the largest mode-2 eigenvalue of the 100 SVD proce-
dures, the second value in that same list gives the second
largest mode 2 eigenvalue, and so forth. Thus, taking
the first value in each list provides a Monte Carlo es-
timate of the 99% confidence limit for the eigenvalues
found from the SVDs performed on the observed data.
In this study, we chose those eigenmodes that had ei-
genvalues larger than this 99% significance level for all
lead times for both seasons, in this case only the first
three modes (cf. Preisendorfer et al. 1981; Overland and
Preisendorfer 1982).

The predictions starting from the current pentad, Pen-
tad0, with lead M pentads, are produced by taking the
projection of the Pentad0 2 1 and Pentad0 pentads onto
the predictor patterns of the first three modes for the
given lead time (e.g., upper panels of Figs. 4, 5, and 6
contain the predictor patterns for modes 1, 2, and 3 for
an M 5 3 pentad lead). This gives a projection coef-
ficient for each of the three modes. Each projection co-
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FIG. 6. Same as Fig. 4, except for mode 3 for both Northern Hemisphere winter (left) and summer (right).

efficient is then multiplied by its associated predictand
patterns (e.g., lower panels of Figs. 4, 5, and 6 contain
the predictand patterns for modes 1, 2, and 3 for an M
5 3 pentad lead), and then these weighted predictand
patterns are summed together, giving an estimate of the
bandpassed OLR anomalies at Pentad0 1 M (cf. Graham
et al. 1987).

3. Model validation and skill

The prediction scheme described in the previous sec-
tion was cross-validated on the OLR data that was not
used in the model development, that is, 1990–96. Figure
8 shows an example 3-pentad lead forecast, along with
the corresponding validation data, in the form of a time–
latitude diagram for summer 1992. The longitude range
represented here is 758–908E. The observed anomalies
(annual cycle removed) are in the upper panel, the band-
passed anomalies are in the middle panel, and the fore-
cast anomalies (which are inherently bandpassed) are in
the lower panel. The validation data illustrate the slow

timescale of the MJO and show its impact on the onset
and break periods of the summer Asian monsoon
throughout the Indian Ocean and Indian subcontinent
(e.g., Yasunari 1979; Lau and Chan 1988). The model
forecast shows very good agreement with the bandpas-
sed observations, which in turn have a fair resemblence
to the total OLR anomalies. Of the three panels shown,
the panel with the predicted OLR exhibits the smoothest
variations in both time and space. This is due to the fact
that the forecast model is based on data that have un-
dergone both temporal bandpassing and modal filtering.
The modes that are retained (i.e., leading three modes;
see section 2 and Fig. 7) account for about 65%–70%
of the covariance between the filtered predictor and pre-
dictand fields and about 27% of the variance of the
filtered predictand field. To help assess the meteorology
associated with the low-frequency fluctuations shown
in Fig. 8, it is useful to note that in the Eastern Hemi-
sphere warm pool areas, a 10 W m22 OLR anomaly is
approximately equal to a 2.0 mm day21 rainfall anomaly
(Xie and Arkin 1997). Therefore, the intraseasonal fluc-
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FIG. 7. (left panels) Percent covariance explained by the first 10
modes of the SVD decompositions for (top) winter and (bottom)
summer models with lead times from 1, 4, and 8 pentads (box, tri-
angle, and cross, respectively). (right panels) Same, except for percent
variance explained by the predictands of the first 10 modes. In each
case, estimates of 99% confidence limit is also shown (open dots).

tuations in rainfall induced by the MJO during this pe-
riod are on the order of 60.5 cm day21. While the
overall agreement is qualitatively good between the
model and the observations, the time period between
mid-July and mid-August illustrates an instance where
the model’s performance appears particularly poor. Dur-
ing this period the observations show an extended
‘‘wet’’ (negative OLR anomalies) period, encompassing
about 40 days, north of the equator. For this same period,
the model predicts the initial stage of the wet period
fairly well; however, due to the intrinsic timescale as-
sociated with the model, it predicts a ‘‘dry’’ period to
follow in early August, which is inconsistent with ob-
served conditions.

Figure 9 shows a forecast similar to Fig. 8, except
for 1992 winter conditions and a longitude range of
1208–1358E. In this case, the forecast and the associated
validation data illustrate the intraseasonal influence of
the MJO on the summer Australian monsoon (e.g., Hen-
don and Liebmann 1990a,b). Again, the model shows
very good agreement with the bandpassed observations,
which in turn show a fair resemblence to the total OLR
anomalies. The agreement between the model and ob-
servations is best during January and February when a
series of two strong MJO events propagate into the re-
gion and appear to produce a significant impact on
northern Australian rainfall (;3 cm pentad21 based on
the scaling given above). These events are the same
events that were captured by the Tropical Ocean Global
Atmosphere Coupled Ocean–Atmosphere Response Ex-
periment (COARE; Webster and Lucas 1992), and that

have been analyzed in a number of studies (e.g., Nak-
azawa 1995; Weller and Anderson 1996; Waliser et al.
1996; Lin and Johnson 1996; Lau and Sui 1997).

Figure 10 shows the above forecast in the form of a
time–longitude diagram. In this case the latitude range
extends from 108S to 108N. Again, the validating data
in both bandpassed (middle panel) and total anomaly
(left panel) forms are given. The extra lines at 1508E
extending from the beginning of the forecast period
through February indicate the overlapping COARE in-
tensive observation period (IOP) at the site of the central
Improved Meteorlogical (IMET) ocean/surface flux
mooring (Weller and Anderson 1996). This set of ob-
servation data and forecasts for the COARE period is
meant to illustrate the potential utility that might have
been garnered from statistical forecasts of this kind dur-
ing the IOP. For the strong intraseasonal events occur-
ring during the IOP, that is, the two wet periods around
17 December and 20 January and the two dry periods
around 10 January and 10 February, the statistical model
appears to show some capability in providing advance
(;15 days) notice of their arrival. Also evident during
this period is a slow positive trend in total OLR anom-
aly, especially in the central and eastern Pacific, which
is associated with large-scale, low-frequency ENSO var-
iability. In the model’s present design there has been no
effort to incorporate the slowly varying component of
the anomalies into the forecast. This aspect of the model
and its possible improvements will be discussed in sec-
tion 4. For the forecasts discussed above, the statistical
model appears to show useful forecast skill over the
Indian and western Pacific Oceans, and nearby land
masses, out to at least 15 days. A more robust measure
of the skill will be given below, which shows that the
same level of model-data agreement can often extend
out to 20-day lead times.

Figure 11 provides a global assessment of the model’s
predictive skill by illustrating the (temporal) correlation
scores at each location and for lead times from 1 to 5
pentads against bandpassed observations. Winter (sum-
mer) correlation values are given in the left (right) pan-
els. Note that the number of pentads incorporated in
these plots is 263 for summer and 277 for winter. Au-
tocorrelation values suggest that these sample sizes
should be divided by about 6 to give a more realistic
value for the number of independent samples. Therefore,
being given about 40 independent samples for these
computations implies a 99% confidence level on cor-
relation values of 0.4. Model skill scores are highest in
the Eastern Hemisphere where the MJO-related OLR
variability is highest and where the dominant modes
used in the model exhibit some predictive structure (i.e.,
Figs. 4–6). High values are between 0.7 and 0.9 and
occur in some areas of the Indian Ocean, the Maritime
Continent, and the western Pacific Ocean. Over much
of the Eastern Hemisphere, the correlation values are
about 0.5 for lead times extending out to 3 to 4 pentads.
There are a few areas of high correlation over Africa
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FIG. 8. Time–latitude plots of 3-pentad OLR prediction (lower; Pentad0 1 3), along with
validating total (upper) and bandpassed (middle) OLR anomalies, for 1992 Northern Hemi-
sphere summer. Data are averaged between 758 and 908E.

and some modestly high values over portions of the
tropical Americas. In addition to the higher correlation
values found in both seasons in the equatorial warm-
pool regions, the highest values for winter are biased
toward northern Australia and the SPCZ, while those

for summer are biased toward southeast Asia and the
Indian subcontinent. In areas where the model seems to
do well, the correlation values tend to remain high out
to about 15 to 20 days, at which point they appear to
diminish fairly rapidly.



JULY 1999 1929W A L I S E R E T A L .

FIG. 9. Same as Fig. 8, except for 1992 Northern Hemisphere winter. Data are averaged
between 1208 and 1358E.

An estimate of the absolute errors associated with the
statistical forecasts is provided in Fig. 12, which is sim-
ilar to Fig. 11, except that it shows root-mean-square
(rms) errors between the forecasts and the bandpassed
data. Also, the lead times shown are for 1, 2, 3, 5, and
7 pentads to illustrate the size of the error at very long

lead times. As with the correlation plots in Fig. 11, the
rms errors remain relatively constant out to about 3
pentads, with further increases in lead time resulting in
marked increases in the rms error. At short lead times,
typical errors over a broad area of the Eastern Hemi-
sphere are about 7–11 W m22, with errors in the deep
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FIG. 10. Time–longitude plots of 3-pentad OLR prediction (right; Pentad0 1 3), along with validating total (left) and bandpassed (center)
OLR anomalies, for 1992 Northern Hemisphere winter. Data are averaged between 108S and 108N. Negative OLR values are shaded and
indicate positive rainfall anomalies. Lines at 1508E extending from the beginning of the period through February indicate the overlapping
COARE IOP at the site of the central IMET ocean/surface flux mooring.

Tropics reaching about 11–14 W m22. At very long
leads, the errors increase to 14–18 W m22, and in fact
the error structure at leads of 7 pentads is nearly the
same, in both magnitude and structure, as the standard
deviations of the bandpassed observations shown in Fig.
13. This is to be expected since there appears to be little
or no forecast skill at these very long lead times, and
thus the errors should be about the same size as the
standard deviation of the observations.

A more conservative and practical measure of the
model’s skill is via comparisons to total anomaly data.
Figure 14 shows a temporal correlation maps between
model forecasts and total anomaly data for lead times
from 1 to 5 pentads. The spatial structure is nearly iden-
tical to the structure of the correlation values against
bandpassed data (Fig. 11), although the magnitude is
considerably lower. Highest values in this case are about
0.4 to 0.5, with overall Eastern Hemisphere skill at lead
times from about 1 to 4 pentads being more typically
characterized by a correlation of 0.3. In the case of total
anomalies, autocorrelation values suggest that the sam-
ple sizes (263 for summer and 277 for winter) should
be divided by about 2–3 to give a realistic value for the
number of independent samples. With 90 independent

samples, a correlation value of 0.3 is 99% significant.
The reduction in model skill between the scores shown
in Fig. 11 and those shown in Fig. 14 stems from the
fact that the model only predicts variability between 30
and 70 days and thus is not providing an estimate of
timescales outside this band (e.g., the low-frequency
variability observed in the left panel of Fig. 10). Thus,
these skill scores may be an underestimate of what a
statistical model could do if a simplified method were
incorporated to account for the low-frequency compo-
nent over short lead times. For example, at lead times
of 5–20 days, persistence might be a reasonable model
to use for the low-frequency variability (.70 days, e.g.,
ENSO), which would improve the overall skill of the
above type of model when compared to total anomaly
data. On the other hand, the skill scores in both Figs.
11 and 14 are likely to be overestimates of the present
model’s skill in a true operational context due to the
difficulty of producing a bandpassed estimate of the
most recent 2 pentads. This aspect will be discussed in
more detail in section 4.

To more easily see the degradation of the skill scores
over time, Fig. 15 shows (temporal) correlation scores
at a number of selected tropical cities/regions for both
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FIG. 11. Temporal correlations between predicted OLR and corresponding bandpassed observations for winter (left) and summer (right)
seasons. Correlations are shown for lead times from 1 to 5 pentads, represented here as Pentad0 1 1, Pentad0 1 2, etc.

winter (top) and summer (bottom) plotted out to lead
times of 9 pentads. The left panels show the skill scores
against bandpassed data, and the right panels show the
skill scores against total anomaly data. With the cor-
relations plotted in this fashion, it is more evident that
the model’s skill is generally retained out to about 4
pentads, at which point it diminishes rapidly. Note that
in a number of locations, the skill scores seem to di-
minish at 2 pentads, then rebound slightly at 3 and 4
pentads. The model appears to be most effective for

Darwin, Australia, and Nauru during the winter season,
and Bombay, India; Maldives; Manila, Phillipines; and
Columbo, Sri Lanka, in the summer season. Comparing
the correlation values and the characteristic predictive
timescales between these plots and those based on the
NCEP MRF model (Figs. 1 and 2) illustrate that the
statistical model appears to be significantly more skillful
at predicting intraseasonal variability than the numerical
forecast model analyzed here. These results suggest that
a statistical model of the type presented here might pro-
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FIG. 12. Same as Fig. 11, except shows rms errors between predicted and OLR and corresponding bandpassed observations. Rms errors
are shown for lead times of 1, 2, 3, 5, and 7 pentads.

vide an avenue for implementing improved extended-
range operational forecasts in the Tropics. Furthermore,
results such as these provide a benchmark by which to
assess the predictive skill of extended-range tropical
predictions from numerical forecast models.

4. Summary and discussion

In this study, we have presented the results from an
analysis that explores the feasibility of using a statistical
model to predict tropical rainfall variability at long lead

times (i.e., 5–20 days). The statistical model is based
on a field-to-field approach (i.e., SVD) which uses pre-
vious and present pentads of OLR, the predictors, to
predict future pentads of OLR, the predictands (Figs.
4–6). The model was developed using 30–70-day band-
passed OLR data from 1979 to 1989 and validated on
data from 1990 to 1996. For the validation period, the
model exhibits temporal correlations to observed band-
passed data of about 0.5–0.9 over a significant region
of the Eastern Hemisphere at lead times from 1 to 4
pentads, after which the correlation decreases signifi-
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FIG. 13. Standard deviation of bandpassed anomalies from the validation period for winter (left) and summer (right).

cantly with increasing lead time (Figs. 11 and 15). Cor-
relations against observed total anomalies are on the
order of 0.3–0.5 over a smaller region of the Eastern
Hemisphere (Fig. 14). Typical rms errors between model
forecasts and the observed bandpassed data are between
about 10–14 W m22 out to lead times of 3 to 4 pentads
(Fig. 12; cf. Fig. 13).

Before arriving at the OLR-based model presented in
this article, several variations were tested to determine
an ‘‘optimal’’ configuration. For example, models based
on predictors having only 1 pentad were not as skillful
as the model described above with predictors having 2
pentads. Predictors made up of 3 pentads showed a very
slight improvement at 5–10-day leads but a very slight
degradation at longer leads. In addition, the predictor
fields were also augmented with dynamic fields from
the NCEP–National Center for Atmospheric Research
(NCAR) reanalysis (Kalnay et al. 1996) to determine if
the addition of this type of information would improve
the model’s skill. Tests were done with predictor fields
made up of OLR plus 200-mb zonal wind, OLR plus
850-mb zonal wind, and OLR plus 200-mb velocity
potential. None of these combined predictor fields
showed any noticeable improvement in the model skill
over those containing OLR alone. It should be noted,
however, that at the time these tests with additional data
were done, the bandpassed data included periods from
20 to 100 days instead of the 30–70 days presented here.
While we suspect that the reduced bandwidth of the
filter would not change this conclusion, the dynamic
augmentation of the predictors with more optimal con-
figurations might still warrant further investigation. It
is also worth mentioning that the forecast model was
originally developed for just the Eastern Hemisphere
since it was expected to have the most skill there. Ex-
tending the model domain to the global Tropics did not
show any appreciable improvement/degradation in skill
for the Eastern Hemisphere, but since the full tropical
model showed some skill at short lead times in and

around Central/South America, it was left in for com-
pleteness’ sake. Finally, canonical correlation analysis
was applied instead of SVD with nearly identical results.

Our motivation for undertaking this modeling effort
was based on addressing two objectives. The first ob-
jective was to provide an initial assessment of how well
a statistical model might perform in forecasting rainfall
variability, which is modulated by the MJO. This ob-
jective was one of the main reasons the model devel-
opment was based on OLR anomalies. The second ob-
jective stemmed from our interest in assessing the pre-
dictive skill of the dynamical extended range forecasts
(DERFs) from the NCEP MRF model (Schemm et al.
1996). Based on the figures of the DERF 200-mb zonal
velocity skill shown in the introduction (Figs. 1 and 2)
and those for the OLR-based statistical model, it would
appear that at present statistical models may have the
advantage over the current version of the NCEP MRF
model. To make a more direct comparison between the
statistical and dynamical models, we also constructed a
statistical model using the same methodology outlined
for the OLR-based model (section 2), except that in this
case we used 200-mb zonal winds as the predictors and
predictands. Pentad average zonal winds were obtained
from the NCEP–NCAR reanalysis product (Kalnay et
al. 1996). Model development was based on the 11-yr
period from 1976 to 1986. In this case, the percentage
of covariance accounted for by the first three modes
retained for the model was about 72% and the per-
centage of variance in the predictands was about 31%.
Further, the principal modes for the zonal wind model
had similar levels of confidence as those for the OLR
model (Fig. 7).

Validation of the 200-mb zonal wind model was per-
formed on the subsequent 7 yr of data, from 1987 to
1993. Figure 16 shows the temporal correlations be-
tween the predicted and observed bandpassed data for
lead times between 1 and 5 pentads. In contrast to the
associated figure for the OLR-based model (Fig. 11),
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FIG. 14. Same as Fig. 11, except shows correlations between predicted OLR and corresponding total OLR anomalies.

the correlations are more zonally uniform throughout
the Tropics (which is also the case for the spatial struc-
ture of the principal SVD modes, not shown). While the
maximum correlation values at any given lead time for
the zonal wind model are about the same as those for
the OLR model, they tend to cover a much larger area
at each lead time leading to a better model–data agree-
ment overall. Figure 17 shows an example of a specific
prediction for the bandpassed 200-mb zonal winds for
winter of 1987 in the form of an equatorial time–lon-
gitude plot. The results in these last two figures are
presented for comparison to the results shown in Figs.

1 and 2, which indicated that useful predictive skill for
the DERF extends out to only about 5–10 days. For the
statistical model, however, it is readily apparent that
considerable similarity exists between the model and
the observations out to at least 10 days and even to a
large extent out to 20 days. These results indicate that
considerable advantage might be afforded from the fur-
ther exploration and eventual implementation of the
above types of statistical models to augment current
operational long-range forecasts in the Tropics. More-
over, they also indicate that there is considerably more
work to be done in achieving the likely forecast potential
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FIG. 15. Temporal correlations between predicted OLR and validating observations for Northern Hemisphere winter (top) and summer
(bottom) based on comparisons to bandpassed data (left) and total anomaly (annual cycle removed) data (right) at a number of cities in the
Tropics.

that dynamic models might offer if they could suitably
simulate MJO variability. We are presently analyzing
the DERF predictive skill in more detail to better un-
derstand the variability of the MJO in the NCEP MRF
model (Jones et al. 1999, manuscript submitted to Cli-
mate Dyn.; cf. Hendon et al. 1999) and to help improve
the physical parameterizations that help to maintain its
temporal and spatial structure.

The relatively high skill values illustrated by the sta-
tistical models out to lead times of 3 to 4 pentads offers
some hope that such a model might be a useful tool in
an operational context. The main hurdle in generating
operational predictions from the present scheme is pro-
ducing an accurate bandpassed estimate of the 2 most
recent pentads (i.e., the predictor). These pentads es-
sentially are endpoints of time series and conventional/
typical bandpass methods can produce spurious end-
point behavior. Performing tests on a sequence of two
years’ worth of sample pentad data shows that the band-
passed predictor patterns resulting from a record ex-
tending well beyond the endpoint (in a hindcast sense)

and those resulting from endpoint conditions typically
correlate in space at about 0.9 using the 29-point Lan-
czos filter applied here. A shorter filter would improve
this a bit but would lead to a diminished overall fre-
quency response by reducing its peak amplitude and
broadening its width. Fortunately, it was found that the
more energy that the predictor has in the principal two
modes, the more likely the correlation is above 0.9, and
vice versa. Thus when there is a strong MJO component
in the weather/climate system, the bandpassed predictor
is less likely to contain spurious signals. However, even
a factor of 0.9 would reduce the skill scores a sizable
fraction, given that the predictor pattern would only
encapsulate about 81% of the ‘‘real’’ bandpassed vari-
ance.

Efforts are under way to improve the model with
respect to this operational consideration. A number of
alternatives need to be investigated. One would be to
try an iterative approach by which data from the first
prediction is used to pad the end of the original anomaly
record, upon which a second bandpassed estimate could
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FIG. 16. Same as Fig. 11, except for a statistical model based on 200-mb zonal winds as both predictor and predictand.

be made. This might require making some estimate of
the low-frequency trends as well since any dramatic
change in the low-frequency components between the
actual end of the record, and that component that has
been artificially padded onto the end would likely result
in the generation of artificial high-frequency signals,
which would contaminate the intraseasonal band. Re-
gardless of the approach taken to solve the bandpassed
endpoint problem, having a method to forecast the low-
frequency component (e.g., persistence) will be a useful
addition for a model such as that discussed here when

it is put into operational use. Other alternatives for solv-
ing the above problem might be to use separate tech-
niques for removing the high and low frequencies. Low-
frequency signal (i.e., ENSO variability) might be re-
moved using low-order empirical orthogonal functions,
and high-frequency signals could be removed by using
longer time averages that could even overlap to retain
some aspect of the high temporal resolution (e.g., over-
lapping 10-day averages every 5 days). If an effective
method could be developed to remove the low-fre-
quency component, then the additional filtering needed
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FIG. 17. Time–longitude plots of Pentad0 1 2 and Pentad0 1 4 bandpassed 200-mb zonal wind
predictions (middle and right, respectively), along with validating bandpassed anomalies (left),
for 1987 Northern Hemisphere winter. Data are averaged between 108S and 108N.

to remove high frequencies/wavenumbers could be done
in space rather than time, since most of the intraseasonal
energy is contained within wavenumbers 1–3 (Salby and
Hendon 1994).
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